Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring

نویسندگان

چکیده

Ataxic gait monitoring and assessment of neurological disorders belong to important multidisciplinary areas that are supported by digital signal processing methods machine learning tools. This paper presents the possibility using accelerometric data optimise deep convolutional neural network systems distinguish between ataxic normal gait. The experimental dataset includes 860 segments 16 patients 19 individuals from control set with mean age 38.6 39.6 years, respectively. proposed methodology is based upon analysis frequency components signals simultaneously recorded at specific body positions a sampling 60 Hz. system uses all in range (0,30) Our classification results compared those obtained standard methods, which include support vector machine, Bayesian two-layer features estimated as relative power selected bands. show appropriate selection sensor can increase accuracy 81.2% for foot position 91.7% spine position. Combining input five layers increased 95.8%. suggests artificial intelligence efficient motion they have wide further applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

diagnostic and developmental potentials of dynamic assessment for writing skill

این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...

15 صفحه اول

Typical features of cerebellar ataxic gait.

BACKGROUND Although gait disturbance is one of the most pronounced and disabling symptoms in cerebellar disease (CD), quantitative studies on this topic are rare. OBJECTIVES To characterise the typical clinical features of cerebellar gait and to analyse ataxia quantitatively. METHODS Twelve patients with various cerebellar disorders were compared with 12 age matched controls. Gait was analy...

متن کامل

Ataxic gait following total gastrectomy for gastric cancer

A 58-year-old woman, who had undergone total gastrectomy for early gastric cancer 9 years previously, visited the outpatient clinic complaining of progressive difficulty in walking for 15 d. Laboratory examinations showed macrocytic anemia and a decreased serum vitamin B12 concentration and increased serum concentrations of folate, vitamin E and copper. Magnetic resonance imaging showed multifo...

متن کامل

A data augmentation methodology for training machine/deep learning gait recognition algorithms

There are several confounding factors that can reduce the accuracy of gait recognition systems. These factors can reduce the distinctiveness, or alter the features used to characterise gait; they include variations in clothing, lighting, pose and environment, such as the walking surface. Full invariance to all confounding factors is challenging in the absence of high-quality labelled training d...

متن کامل

assessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks

testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Systems and Rehabilitation Engineering

سال: 2021

ISSN: ['1534-4320', '1558-0210']

DOI: https://doi.org/10.1109/tnsre.2021.3051093